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The Solution of Non-Linear Equations: 
  Algebraic equations can be divided into two class: 

(i)  Linear. 

(ii)  Non-Linear. 

     Each of these then sub-divides into two classes: 

i.e. (i) One variable only. 

      (ii) More than one variable. 

     In a linear equation, all the variables present, occur only to 

the 1st power and no product of variables occur i.e. 

Thus                     is a linear equation with 3 variables.  

                          is not a linear equation.                               
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When we have n independent variables  

we need at least n equations (linear or non-linear) to find a 

unique solution (if one exists). 

    We now concentrate on non-linear equation in a single 

variable: 

     e. g: 

 

 

     In general there is no analytical method for solving non-

linear equations and so we must use numerical methods in 

the sections that follow. 
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We shall develop and study five such methods. These five 

methods fall into two classes: 

(a)  Two-point methods and 

(b)  One-point methods. 

(a)  Two-points methods: 

      (1) The Method of Bisection: 

      Suppose that we wish to solve 

 

and that we have found two approximate values for the 

solution              such that                            it follows that 

assuming             to be continuous over  

    

( ) 0 ... ... ... (1)f x 

1 2,x x 1 2( ) ( ) 0f x f x 

( )f x 1 2,x x 
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there is a solution to (1) some where in the interval    

we therefore have the problem of how to choose a value 

 such that 

 

      The simplest method, from a computational point of view is 

to take 

 

          

we now evaluate           if 

we choose a new point                         whereas if  

3( )f x

1 2,x x 

3x

1 3 2 3( ) 0x x x and f x  

 3 1 2

1

2
x x x 

1 3( ) ( ) 0f x f x 

 4 1 3

1

2
x x x 
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                           then                             and we choose 

 

 

and so on . At every stage we have had two points                

such that                     and we choose the next point to be 

  

and use this point and whichever of            causes         to 

have opposite sign to          as the two points for the 

following stage. 

     The process terminates when we reach a point         

such that         is sufficiently small. 

( ) ( ) 0i jf x f x 
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y

1

This method is known as the method of Bisection. 

Example: 

       Slove           = loge x by the method of Bisection?  

Solution: 
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Put 

 

We want to solve 

Try  

Try 

 

so in the method of Bisection we start with  

and we know     a root between 1 and 2. 

1
( ) log .

1
cf x x

x
 



( ) 0f x 

1 1
1 : (1) log 0

2 2
cx f l    

1
2 : (2) log 2 0.33 0.69 0

3
cx f     

1 21, 2x x 



1 21, 2x x 

1 21 2x and x 
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n  

0.5 > 0 1 1 

-0.36 < 0      2 2 

-0.0055 < 0 1.5 3 

+0.3528 > 0 1.25 4 

+0.1026 > 0 1.375 5 

+0.0474 > 0 1.4375 6 

+0.0208 > 0 1.46875 7 

+0.0075 > 0 1.484375 8 

Stabilizes as 1.49  +0.002 > 0 1.4921875 9 

2.d.p 1.496093575 10 

nx ( )nf x

3

1
(1 2) 1.5

2
x   

4

1
(1 1.5) 1.2

2
x   

5

1
(1.5 1.25) 1

2
x   

6

1
(1.5 1.375)

2
x   

7

1
(1.5 1.4375)

2
x   

8

1
(1.5 1.46875)

2
x   
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   This required 8 iterations to reach 2.d.p accuracy starting 

from an interval length 1. 

 

Conclusion: 

 

   The method of Bisection works but convergence to the 

solution is very slow. The method is easy to program.  

 

Example: 

 

  Find a solution of the equation                                                    

 

 

  

        in the interval  

 

1
0

2
Sin x x 

1
, .

2
  
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Solution: 

 

   Put  

 

   We want to solve  

 

   We have 

 

 

 

 

 

   So, there is at least one solution of the equation in the interval. 

 

   So in the method of Bisetlion we start with 

 

   (Assuming             for simplification.  

1
( ) sin

2
f x x x 

( ) 0f x 

 

1 1
1 0

2 4

1
0

2

f

f




 

 
   

 


 

1 2,
2

x x


 

3 
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n  

1 

2 

3 

1.875 4 

2.0625 5 

1.96875 6 

1.921875 7 

1.898438 8 

1.886719 9 

1.8925785 10 

0
2


 

0.34693 0 

0.01659 0 

0.14972 0 

7

1
(1.875 1.96875)

2
x  

nx ( )nf x

(1.5)
2


 1 0

4


 

(3.0) 
4

1

2 2 4
x

  
  

 

1
2 2.25

2 2 2

  
  

 
4

1
(1.5 2.25)

2
x  

5

1
(2.25 1.875)

2
x  

6

1
(1.875 2.0625)

2
x  

0.06253 0 

0.02194 0  8

1
(1.875 1.921875)

2
x  

0.002415 0  9

1
(1.875 1.898 )

2
x   

0.007151 0 10

1
(1.89 1.88 )

2
x   

0.00238 0
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n  

+0.000002 1.89549 20 
 

       The result is now correct to 5 d.p but convergence 

has been slow 18 iterations to reach the required accuracy. 

 

nx ( )nf x
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The method of False Position: 

        The method of Bisection is very simple to use, easy 

to program for a computer and is certain to converge to a 

solution but it is unnecessarily slow in its convergence. 

        Can we speed this convergence? 

        Looking back, the example we had taken  

 

3 1.5x 
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    and found                              and at that point we chose  

                       clearly this was a foolish thing to do since 

 

 

     Since 0.5 is approximately                    it would seem to 

be more sensible to choose     to be that point which is 

    this of the way from 1 to 1.5. 

       i.e. 1.495 this is nearly correct to 3 d.p already in fact. 

Can we formalize this process? 

      Suppose we are trying to solve              and have two 

      

3 1.5 0.0055x   

4

1
(1 1.5)

2
x  

(1) 0.5.f  

100 0.0055

4x
99

100

( ) 0f x 
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approximations to the solution      and      such that 

and                              

How should we choose our next approximation 

 

 

 

 

 

1x

2( ) 0f x 

2x

1( )f x

1x

1 1 1( , ( )p x f x

3p
2x

2 2( )p x
2( )f x

1( ) 0f x 

3x
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Let      be the point                    and        be the point 

                    . Join      to      by a straight line. Since     is 

above the        axis and       below. 

    The line           must cross the       axis at some point      

between     and         is then our new approximation to the 

root. 

      The equation of the chord            is 

 

 

 1 1, ( )x f x 2p

 1 1, ( )x f x

1p

2p 1p

x  2p

1 2p p x  3x

1x 2 3,x x

1 2p p

1 2

1 2

( ) ( )y f x y f x

x x x x

 


 

1p
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and this line meets the line  

Where 

 

So, given two approximate values          to the solution  

We can construct a new approximate value     . 

    The question now arises. How should we construct the  

next approximation     ? There are clearly two possibilities. 

     (1) to use      and      

     (ii) to use     and 

 

0y 

1 2 2 1
3

2 1

( ) ( )

( ) ( )

x f x x f x
x

f x f x






1 2,x x

3x

4x

3x

3x

1x

2x
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How do we decide? 

     One reasonable way is as follows: 

     Evaluate         and choose     and     if                       

Otherwise choose    and     (since                  will be 

negative). This is the method of false position. 

Example: 

     Solve                      by the method of false position? 

Solution: 

       Try 

       Try 

3( )f x 1x
3x

1 3( ) ( ) 0.f x f x 

3x
2 3( ) ( )f x f x

1
log

1
e x

x




1 (1) 0.5 0x f  

2 (2) 3.36 0x f   

2x
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n  

0.5>0 1 1 

-0.36<0 2 2 

-0.071<0 1.581 3 

-0.0127<0 1.5088 4 

-0.0023<0 1.4962 5 

-0.00041<0 1.4939 6 

-0.00008<0 1.4935 7 

0.000003>0 1.4934 8 

-0.00000/6 1.493406 9 

Correct to 5.d.p in 7 iterations. 

nx ( )nf x
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3.  The Secant Method: 

      The alternative method is to ignore the sign of             

and simply use     and       in the formula. 

       i.e. at each iteration use the two most recent values of      

       . Regardless of sign. This technique is simpler to 

program but it can't guarantee to converge to the root 

whereas the false rule will always coverage. 

      It can be proved however the secant method if it 

coverage's, will on average take only about 62% of the 

number of iteration of the false rule. 

3( )f x

3x
2x

x
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Example: 

      Solve                       by the secant method?  

Solution: 

 

 

 

 

 

 

 

 

n 

0.5 1 1 

-0.36 2 2 

-0.071 1.581 3 

+0.0128 1.4781 4 

-0.00033 1.4938 5 

-0.000008 1.493405 6 

Correct to 5.d.p is 4 iterations. 

nx ( )nf x

1
log

1
e x

x



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Convergence of two point-Methods: 

    The general two point method for solving an   

    equation              takes the form: 

  

 

     Thus for example, for Bisection. 

 

      Second rule: 

 

 

( ) 0f x 

1 ( , )n n n kx G x x 

1

2

n nx x
G 


1 1

1

( ) ( )

( ) ( )

n n n n

n n

x f x x f x
G

f x f x

 







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For false Rule: 

 

 

where, 

 

 

An important question is: does any particular method 

converge to the true solution? It so under what conditions 

and how fast? 

 

( ) ( )

( ) ( )

n n k n k n

n k n

x f x x f x
G

f x f x

 








( ) ( ) 0n n kf x f x  
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Convergence of the method of Bisection: 

     At each stage we have two approximations to the 

solution                which have the property that  

                                . So there is a root always in the 

interval 

 

     The next point           is                     and our new 

root lies either in the interval 

            

1,n nx x 

1( ) ( ) 0n nf x f n  

1,n nx x  

1nx  1

2

n nx x 

1 1 1, ,n n n nx x or in x x     
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and the sign of                tells us which interval it is. 

Therefore, if when we started, we know that the root lay in 

the interval                    of length                         

after the 1st iteration we would know which of the intervals  

                and                  contained the root; these intervals 

are of length           clearly after n iterations we will know 

that the root lies in a particular interval of length            , 

since d  is fixed 

(
1
)f x

n

,
1

x x
o

  | | ( )
1 1

x x d say 

,
2 1

x x  ,
2 0

x x 

1
;

2
d

;
2n

d

0 .
2n

d
as n 
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So, the process converges and furthermore we can work 

out as many iterations we need to get the root correct to 

say, m.d.p for after n iterations the root with an error of  

and if this is to be correct to m d.p  we must choose n so 

that  

 

     

 

 

 

2n

d

1
10

2 2

m

n

d  

1

2 2

2

2

. / 2 10

. / 1 log 10 log

1
1 3 log

3

1
log 10 3 .

3

n mi e d

i e n m d

m d

Since

 

  

 
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for example when we had                           we had 

                            so         , So for 2 d.p accuracy we 

would expect to need n iterations. 

Where 

 

In fact we needed 8, if we now wish to go to 5 d.p 

accuracy the total numbers of iteration we would need 

be about. 

                                 i.e/about 18. 

 

1d 

1
( ) log

1
ef x x

x
 



1, 1,2ox x    

1 2
1 3 2 7

3 3
n

 
  
 

1 2
1 3 5 17

3 3

 
  
 
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Thus we have proved that the Bisection Method 

converges and if          is the error in the approximation 

after         steps then               which then yields the 

formula  above. 

     For the method of false rule it can be shown that 

convergence will always occur and the errors in the 

solution at two consecutive iterations,       and          

are related by 

where the value of K depends upon particular function  



1n 

1n  1

1

2
n n 

n n 

1, . . | | |n nk Where K  
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f(x).  If | k | is small convergence is fast, if | k | is nearly = 1 

convergence is slow. 

    These two methods both have the propects that the error 

at consecutive stages are related by a formula of the type  

                  where A is some constant.  

     In each cases we say that the process converges 

linearly. 

     There are also processes where the errors at 

consecutive stages               are related by a formula of the 

type                   in which we say that the method  

1n nA 

1,n n  

1

p

n nA 
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converges with power P. 

     It can be proved that the 2nd method converges with 

power             the bigger the value of P, the faster the 

method will converge. 

 

 

 

 

 

 

5 1

2


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(b) The one point methods: 

        We shall discuss two such methods: 

1)  Newton-Raphson Method with two variations.  

      (i) For multiple roots. 

      (ii) Stephenson's Methods. 

2)   General Iterative Method. 
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1.  Newton-Raphson Method: 

1 2,x x

   1 2 2 2. , ( ) . ( , ( )P x f x p x f x

If, in the secant Method, we let the two starting values  

 become arbitrarily close we eventually replace the secant joining the points  

 by the tangent at P1. 

( )nd x

nx

1p

a

( )g f x2( )f x

1( . ( )n np x f x  1,0nx 

1nx 
1nx 

Let T be the tangent at  and let T cross the line y = 0 at a then a is  

 and   is our new approximation. We can find the value of  easily for: 

1

( ) 0
( ).n

n

n n

f x
f x

x x 






from which we deduce that 
1

( )

( )

n
n n

n

f x
x x

f x
  



this is the Newton-Raphson formula. 
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Example :  

 
x

x
Solve elog

1

1




By the Newton – Raphson  method?  

11 x

xx
xf

x
x

xf e

1

)1(

1
)('

log
1

1
)(

2












Solution :  

Start at    

Newton – Raphson Method gives.  
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1

2

1
log

1

1 1

(1 )

n

n

n n

n n

x
x

x x

x x



 
 

  
 

 
 

xn  = n 

1 1 

1.4  =  2 

1.4903 = 3 

1.49340 =  Correct to 5.d.p 4 

1 1 1
(1.4 log 1.4) /( )

2.4 5.76 1.4
  

1 1
(1 0) /( 1)

2 4

 
   
 
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     Thus the Newton Raphson gets 5.d.ps in 3 iterations 

compared with 16 by the method if Bisection.  

Example: 

      Find        by the Newton Raphson Method? 

Solution: 

                     is the root of  

so, in the N-R we put 

 

 

 

1

32

1

32 3 2 0x  

3

2

( ) 2

( ) 3

f x x

f x x

 

 
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We start at  

 3

1 2

2

2

3

2 1

3

n

n n

n

n

n

x
x x

x

x
x




 

 
  

 

1 1x 

2

3

4

5

4
1.3333

3

1.26389 ( 2 . )

1.2599335 ( 4 . )

1.25992105 ( 8 . )

x

x correct to d p

x correct to d p

x correct to d p

 






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i.e  

 

 

Theorem: 

               If      is the exact solution of                 and 

                 the Newton Rophson method will converage 

provided that     is sufficiently small and 

 

  

   

3

3

5

4

10

5

3.9 10

1.245 10

1.06 10













 

 

 

 ( ) 0f x 

1 1x   

1

2

1

1 ( )
1

2 ( )

f

f










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Proof: 

Let                    where     is the exact solution of  

   Then our next estimate of 

 

 

 

 

 

 

and so, since                          is sufficiently small,  

 

1 1x     ( ) 0f x 

1
2 1

1

1
1

1

( )

( )`

( )

( )`

f x
x x

f x

f

f x

 
 



 


  



1( ) 0f if 


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which simplifies, on neglecting      and higher term. 

 

 

Thus 

  

 

3

1

2 1

1 1

2 1

1

1
( ) ( )

2

( ) ( )

f f

x
f f

   
 

  

 

 
 

2

2 1

1 ( )

2 ( )

f
x

f


 




 



2

2 1

1 ( )

2 ( )

f
x

f


 




 


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and so  

 

 

provided  

 

this proves the theorem. 

       We will have  

 

 

so that the error will decrease quadratically. Thus if our first 

estimate is accurate to 1 d.p. our 2nd should be accurate to 

2 d.p our 3rd to 4 d.p. Our 4th to 8 d.p and so on. 

 

 

2 1 1x x     

2

1

1 ( )
1

2 ( )

f

f











. / .

n n

n n

x

i e x

 

 

 

 
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Example: 

    Use the Newton Raphson Method to find       to  

4.d.p starting from           ? 

Solution: 

    In this case     

 

 

 

 

                     

1x 

2

2( ) 2f x x 
2( ) 2

( ) 2`

f x x

f x x

 



 2

1

:

2

2

1 2

2

n

n n

n

n

n

N R formula

x
x x

x

x
x






 

 
  

 
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n

Hence we have the successive approximations. 

xn n 

0.4142 1 1 

0.0858 (1 d.p) 1.5 2 

0.0025 (2 d.p) 1.4167 3 

0.000014 (4.d.p) 1.4142 4 
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(1)  The Newton Raphson method may fail, or at best 

converage slowly if the function has amultiple root or two 

roots very close together. 



46 

     To over come this difficulty modified versions of the 

Newton Raphson method have been developed, one of 

which we now examine. 

    Suppose that        has a zero at          of multiplicity K. 

then 

 

 

    We modify the Newton Raphson formula 

 

 

( )f x x 

1( ) ( ) ... ... ( ) 0

( ) 0

k

k

f f f

but f

  



   



1

( )

( )

n
n n

n

f x
x x

f x
 


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by introducing a parameter     as a factor of the second 

term vis. 

 

 

and we carryout an analysis to find the best value for     . 

Let 

 

 

 

 



1

( )

( )

n
n n

n

f x
x x
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
  
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

1
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! ( 1)!
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k kn n
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f x f f f
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 
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 
 




 

   

 
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and  

 

 

 

since    is a zero of multiplicity K these formulae simplify to  

 

 

 

 

 

1
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( ) ( ) ( ) ( ) ...

( )
( )

( 1)! !

n n n

k k k
kn n

f x f f f

f
f

k k

    

  





      

 




1
1

1
1

( ) ( ) ( )
( 1)

( ) ( ) ( )
( 1) !

k k
k kn n

n

k k
k kn n

n

f x f f
k k

f x f f
k k

 
 

 
 








 

 




49 

and so substituting in * 

 

 

 

where 

 

Hence 

 

 

by choosing              we retain  

quadratic convergence in this modified Newton Raphson 

2

1

(
( )

(1 )

n n
n n

n

a
x

k b

  
 





  



1 1( ) ( )
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k f kf
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
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and that  

 

we have therefore proved: 

Theorem:  

     if        has a zero of multiplicity K  at           the modified   

Newton Raphson formula 

 

 

has quadratic convergence.   

 

1
2

1 1

( )

( 1) ( )

k

n n nk

f
x e

k k f


 





  


( )f x x 

( )

1
( )

nf x

n n

n

K
x x

f x
  


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Example: 

    Use the modified Newton Raphson method + find the 

double positive root of                                starting at  

Solution: 

    In this case K = 2 

    so the formula is  

 

   or  

 

 

4 24 4 0x x   1 1x 

 4 2

1 3

2 4 4

4 8

n n

n n

n n

x x
x x

x x


  




4

1 3

4

2 4

n
n

n n

x
x

x x






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n xn 

1 1 

2 1.5 

3 1.4167 

4 1.4142         Which is correct to 4   
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(ii) Stephenson's Method: 

The N-R has the disadvantage that we have to 

workout           Stephenson’s produced a variant which 

avoids this but still converges quadratcally steffenson’s 

iterative formula is 

 

 which is easy to program and avoids having to write a 

procedure for            

 

( )f x

 

2

1

( )

( ) ( )

n
n n

n n n

f x
x x

f x f x f x
  

 

( ).`f x
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2.  The General Iterative Method (Fixed Point Method): 

   The Newton-Raphson method is a particular example of 

a class of what are known as “iterative methods”. An 

iterative method is one in which an expression of the form. 

 

is used to produce the (n+1) st approximate  

to the solution of the equation. 

 

From the nth approximation (Xn). 

 

 1nx 

 1 ... ... *n nx F x 

( ) ... ... (1)x F x
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Theorem: 

       If     is the exact solution of (1) so that  

then * will converge to      from a sufficiently close starting  

value      if and only if  

Proof:  We are using * so that 

             

Suppose that                         then 

( )F 



( ) 1.`F  

1 ( )n nx F x 

 2

1 ( ) ( ) ( ) 0`

( ).`

n n n n

n

x F F F

F

     

  

     

 



ox

1 ( )n nx F x 
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(Assuming that       may be ignored) 

   Thus the magnitude of the error at the          st iteration is 

 

the errors                       will therefore form a decreasing 

sequence iff                  i.e. convergence will occur iff          

Definition: 

     If an iterative procedure for solving an equation 

converges to the solution in such a way that the errors 

at the n-th and (n+1) st iterations have a relationship of the  

2

n

( 1)n 

( ) ( )` `n nF iff F    

1, , ...,o 

( ) 1`F   ( ) 1`F  

1,n n  

1 
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form                      then we say that the iterative procedure 

“converges with power P”. 

Corollary: 

     Since                                      the convergence is linear 

(i.e./            ) unless                     The smaller the value of 

              the more rapid the convergence. Thus for fast 

convergence we should try to arrange* so that              is 

small.  

Example: 

      Find the positive root of                            using iterative 

methods?   

             

1

p

n nA  

1 ( )`n n nF    

1  ( ) 0.`F  

( )`F 

( )`F 

2 1 0x x  
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(Starting with             ) 

Solution: 

      

 

(i) by writing the equation as 
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Convergence will not occur since 

 (ii)  by writing the equation as: 

 

 

 

 

 

 

convergence will occur since 

Taking  
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1
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1
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n        

0    1 

1    2 

2 

3 

4 

5 

6 

1[ ( )]`n n nx x F x 

3/ 2 1.5

5/3 1.667

8/5 1.600

13/8 1.625

21/13 1.615

)]([ 1 nn xFx 
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Example: 

     Consider the equation 

Use three iteration of fixed point method with  

To find the first positive nonzero root? 

 

2 cos( ) 2.45 0xx e x  

0.75ox 
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(ii) 

 

 

 

 

 

 

 

 

                                                    it converges.   
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(it has root in the interval (0, 1.5). 

Solution: 

(i) 

 

 

 

 

   

 

convergence will not occur. 

2
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n        

0    0.75 

1   0.9477 

2    0.9781 

3    0.9833 

1 ( )n n nx x F x 


