NUMERICAL ANALYSIS

MATH (422) LECTURE NOTES

BY
DR. ABDU RAHMAN AL-FHAID

PART 2

The Solution of Non-Linear Equations:

Algebraic equations can be divided into two class:
(i) Linear.
(ii) Non-Linear.

Each of these then sub-divides into two classes:
i.e. (i) One variable only.
(ii) More than one variable.

In a linear equation, all the variables present, occur only to the $1^{\text {st }}$ power and no product of variables occur i.e. (not $x y, \frac{y}{x}$)
Thus $3 x+s y-z=14$ is a linear equation with 3 variables.
$3 x+5 y z-7 z=14$ is not a linear equation.

When we have n independent variables $x_{1}, x_{2}, \ldots \ldots, x_{n}$ we need at least n equations (linear or non-linear) to find a unique solution (if one exists).

We now concentrate on non-linear equation in a single variable:
e. g: $\quad 3 x^{2}-2 x+7$

$$
\begin{aligned}
& x^{3}-5 x^{2}-4 x-17=0 \\
& (1+x)^{\frac{5}{2}} e^{-x^{2}}=\frac{1}{2}
\end{aligned}
$$

In general there is no analytical method for solving nonlinear equations and so we must use numerical methods in the sections that follow.

We shall develop and study five such methods. These five methods fall into two classes:
(a) Two-point methods and
(b) One-point methods.
(a) Two-points methods:

(1) The Method of Bisection:

Suppose that we wish to solve

$$
\begin{equation*}
f(x)=0 \ldots \tag{1}
\end{equation*}
$$

and that we have found two approximate values for the solution x_{1}, x_{2} such that $f\left(x_{1}\right) f\left(x_{2}\right)<0$ it follows that assuming $f(x)$ to be continuous over $\left\langle x_{1}, x_{2}\right\rangle$
there is a solution to (1) some where in the interval $\left\langle x_{1}, x_{2}\right\rangle$ we therefore have the problem of how to choose a value x_{3} such that

$$
x_{1}<x_{3}<x_{2} \text { and } f\left(x_{3}\right)=0
$$

The simplest method, from a computational point of view is
to take

$$
x_{3}=\frac{1}{2}\left(x_{1}+x_{2}\right)
$$

we now evaluate $f\left(x_{3}\right)$ if $f\left(x_{1}\right) f\left(x_{3}\right)<0$
we choose a new point $x_{4}=\frac{1}{2}\left(x_{1}+x_{3}\right)$ whereas if
$f\left(x_{1}\right) f\left(x_{3}\right)>0$ then $f\left(x_{2}\right) f\left(x_{3}\right)<0$ and we choose

$$
x_{4}=\frac{1}{2}\left(x_{2}+x_{3}\right)
$$

and so on. At every stage we have had two points x_{i}, x_{j} such that $f\left(x_{i}\right) f\left(x_{j}\right)<0$ and we choose the next point to be

$$
x_{e}=\frac{1}{2}\left(x_{i}+x_{j}\right)
$$

and use this point and whichever of x_{i}, x_{j} causes $f(x)$ to have opposite sign to $f\left(x_{e}\right)$ as the two points for the following stage.

The process terminates when we reach a point x_{n} such that $\left|f x_{n}\right|$ is sufficiently small.

This method is known as the method of Bisection.

Example:

Slove $\frac{1}{1+x}=\log _{\mathrm{e}} \mathrm{x}$ by the method of Bisection?

Solution:

Put $f(x)=\frac{1}{1+x}-\log _{c} x$.

We want to solve $f(x)=0$
Try $x_{1}=1, \quad x_{2}=2 \quad x=1: \quad f(1)=\frac{1}{2}-\log _{c} l=\frac{1}{2}>0$
Try $x_{1}=1, \quad x_{2}=2 \quad x=2: \quad f(2)=\frac{1}{3}-\log _{c} 2=0.33-0.69<0$
so in the method of Bisection we start with $x_{1}=1$ and $x_{2}=2$ and we know \exists a root between 1 and 2.

n	x_{n}	$f\left(x_{n}\right)$	
1	1	$0.5>0$	
2	2	$-0.36<0$	$x_{3}=\frac{1}{2}(1+2)=1.5$
3	1.5	$-0.0055<0$	$x_{4}=\frac{1}{2}(1+1.5)=1.2$
4	1.25	$+0.3528>0$	$x_{5}=\frac{1}{2}(1.5+1.25)=1$
5	1.375	$+0.1026>0$	$x_{6}=\frac{1}{2}(1.5+1.375)=$
6	1.4375	$+0.0474>0$	$x_{7}=\frac{1}{2}(1.5+1.4375)=$
7	1.46875	$+0.0208>0$	$x_{8}=\frac{1}{2}(1.5+1.46875)=$
8	1.484375	$+0.0075>0$	
9	1.4921875	$+0.002>0$	Stabilizes as 1.49
10	1.496093575		2.d.p

This required 8 iterations to reach 2.d.p accuracy starting from an interval length 1.

Conclusion:

The method of Bisection works but convergence to the solution is very slow. The method is easy to program.

Example:

Find a solution of the equation

$$
\begin{aligned}
& \operatorname{Sin} x-\frac{1}{2} x=0 \\
& \text { in the interval }<\frac{1}{2} \pi, \pi>
\end{aligned}
$$

Solution:

Put $f(x)=\sin x-\frac{1}{2} x$
We want to solve $f(x)=0$
We have $f\left(\frac{1}{2} \pi\right)=1-\frac{1}{4 \pi}>0$

$$
f(\pi)=\frac{-1}{2} \pi<0
$$

So, there is at least one solution of the equation in the interval.
So in the method of Bisetlion we start with $x_{1}=\frac{\pi}{2}, x_{2}=\pi$
(Assuming $\pi=3$ for simplification.

n	X_{n}	$f\left(x_{n}\right)$
1	$\frac{\pi}{2}=(1.5)$	$1-\frac{\pi}{4}>0$
2	$\pi=(3.0)$	$-\frac{\pi}{2}<0 \quad x_{4}=\frac{1}{2}\left(\frac{\pi}{2}+\frac{\pi}{4}\right)$
3	$\frac{1}{2}\left(\frac{\pi}{2}+2 \frac{\pi}{2}\right)=2.25$	$-0.34693<0 \quad x_{4}=\frac{1}{2}(1.5+2.25)$
4	1.875	$+0.01659>0 \quad x_{5}=\frac{1}{2}(2.25+1.875)$
5	2.0625	$-0.14972<0 \quad x_{6}=\frac{1}{2}(1.875+2.0625)$
6	1.96875	$-0.06253<0 \quad x_{7}=\frac{1}{2}(1.875+1.96875)$
7	1.921875	$-0.02194<0 \quad x_{8}=\frac{1}{2}(1.875+1.921875)$
8	1.898438	$-0.002415<0 \quad x_{9}=\frac{1}{2}(1.875+1.898-)$
9	1.886719	$0.007151>0$

n	x_{n}	$f\left(x_{n}\right)$
20	1.89549	+0.000002

The result is now correct to $5 \mathrm{~d} . \mathrm{p}$ but convergence has been slow 18 iterations to reach the required accuracy.

The method of False Position:

The method of Bisection is very simple to use, easy to program for a computer and is certain to converge to a solution but it is unnecessarily slow in its convergence.

Can we speed this convergence?
Looking back, the example we had taken $x_{3}=1.5$
and found $x_{3}=1.5=-0.0055$ and at that point we chose $x_{4}=\frac{1}{2}(1+1.5) \quad$ clearly this was a foolish thing to do since $f(1)=+0.5$.

Since 0.5 is approximately 100×0.0055 it would seem to be more sensible to choose x_{4} to be that point which is $\frac{99}{100}$ this of the way from 1 to 1.5 .
i.e. 1.495 this is nearly correct to 3 d.p already in fact.

Can we formalize this process?

Suppose we are trying to solve $f(x)=0$ and have two
approximations to the solution x_{1} and x_{2} such that $f\left(x_{1}\right)>0$
and $f\left(x_{2}\right)<0$
How should we choose our next approximation x_{3}

Let p_{1} be the point $\left(x_{1}, f\left(x_{1}\right)\right)$ and p_{2} be the point $\left(x_{1}, f\left(x_{1}\right)\right)$. Join p_{1} to p_{2} by a straight line. Since p_{1} is above the x_{-}axis and p_{2} below.

The line $p_{1} p_{2}$ must cross the x - axis at some point x_{3} between x_{1} and x_{2}, x_{3} is then our new approximation to the root.

The equation of the chord $p_{1} p_{2}$ is

$$
\frac{y-f\left(x_{1}\right)}{x-x_{1}}=\frac{y-f\left(x_{2}\right)}{x-x_{2}}
$$

and this line meets the line $y=0$
Where

$$
x_{3}=\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}
$$

So, given two approximate values x_{1}, x_{2} to the solution
We can construct a new approximate value x_{3}.
The question now arises. How should we construct the next approximation x_{4} ? There are clearly two possibilities.
(1) to use x_{1} and x_{3}
(ii) to use x_{2} and x_{3}

How do we decide?

One reasonable way is as follows:
Evaluate $f\left(x_{3}\right)$ and choose x_{1} and x_{3} if $f\left(x_{1}\right) f\left(x_{3}\right)<0$. Otherwise choose x_{2} and x_{3} (since $f\left(x_{2}\right) f\left(x_{3}\right)$ will be negative). This is the method of false position.

Example:

Solve $\frac{1}{1+x}=\log _{e} x$ by the method of false position?
Solution:

$$
\begin{array}{ll}
\text { Try } x=1 & f(1)=0.5>0 \\
\text { Try } x=2 & f(2)=-3.36<0
\end{array}
$$

n	x_{n}	$f\left(x_{n}\right)$
1	1	$0.5>0$
2	2	$-0.36<0$
3	1.581	$-0.071<0$
4	1.5088	$-0.0127<0$
5	1.4962	$-0.0023<0$
6	1.4939	$-0.00041<0$
7	1.4935	$-0.00008<0$
8	1.4934	$0.000003>0$
9	1.493406	$-0.00000 / 6$

Correct to 5.d.p in 7 iterations.

3. The Secant Method:

The alternative method is to ignore the sign of $f\left(x_{3}\right)$ and simply use x_{3} and x_{2} in the formula.
i.e. at each iteration use the two most recent values of
x. Regardless of sign. This technique is simpler to program but it can't guarantee to converge to the root whereas the false rule will always coverage.

It can be proved however the secant method if it coverage's, will on average take only about 62% of the number of iteration of the false rule.

Example:

Solve $\frac{1}{1+x}=\log _{e} x$ by the secant method? Solution:

n	x_{n}	$f\left(x_{n}\right)$
1	1	0.5
2	2	-0.36
3	1.581	-0.071
4	1.4781	+0.0128
5	1.4938	-0.00033
6	1.493405	-0.000008
Correct to 5.d.p is 4 iterations.		

Convergence of two point-Methods:

The general two point method for solving an equation $f(x)=0$ takes the form:

$$
x_{n+1}=G\left(x_{n}, x_{n-k}\right)
$$

Thus for example, for Bisection.

$$
G=\frac{x_{n}+x_{n-1}}{2}
$$

Second rule:

$$
G=\frac{x_{n} f\left(x_{n-1}\right)-x_{n-1} f\left(x_{n}\right)}{f\left(x_{n-1}\right)-f\left(x_{n}\right)}
$$

For false Rule:

$$
G=\frac{x_{n} f\left(x_{n-k}\right)-x_{n-k} f\left(x_{n}\right)}{f\left(x_{n-k}\right)-f\left(x_{n}\right)}
$$

where,

$$
f\left(x_{n}\right) f\left(x_{n-k}\right)<0
$$

An important question is: does any particular method converge to the true solution? It so under what conditions and how fast?

Convergence of the method of Bisection:

At each stage we have two approximations to the solution x_{n}, x_{n-1} which have the property that
$f\left(x_{n}\right) f\left(n_{n-1}\right)<0$. So there is a root always in the interval

$$
<x_{n}, x_{n-1}>
$$

The next point x_{n+1} is $x_{n}+x_{n-1}$ and our new root lies either in the interval

$$
<x_{n}, x_{n+1}>\text { or in }<x_{n+1}, x_{n-1}>
$$

and the sign of $f\left(x_{n+1}\right)$ tells us which interval it is.
Therefore, if when we started, we know that the root lay in
the interval $\left\langle x_{o}, x_{1}\right\rangle$ of length $\left|x_{1}-x_{1}\right|=d$ (say)
after the $1^{\text {st }}$ iteration we would know which of the intervals
$\left.<x_{2}, x_{1}\right\rangle$ and $\left\langle x_{2}, x_{0}\right\rangle$ contained the root; these intervals
are of length $\frac{1}{2} d$; clearly after n iterations we will know that the root lies in a particular interval of length $\frac{d}{2^{n}}$;
since d is fixed $\frac{d}{2^{n}} \rightarrow 0$ as $n \rightarrow \infty$.

So, the process converges and furthermore we can work out as many iterations we need to get the root correct to say, m.d.p for after n iterations the root with an error of $\frac{d}{2^{n}}$ and if this is to be correct to m d.p we must choose n so that $\frac{d}{2^{n}}<\frac{1}{2} \times 10^{-m}$
i.e/ $\quad 2^{n-1}>10^{m} d$
i.e/ $n>1+m \log _{2} 10+\log _{2} d$
$\square \quad 1+3 \frac{1}{3} m+\log _{2} d$
Since $\log _{2} 10 \square 3 \frac{1}{3}$.
for example when we had $f(x)=\frac{1}{1+x}-\log _{e} x$ we had $\left\langle x_{o}, x_{1}\right\rangle=\langle 1,2\rangle$ so $d=1$, So for 2 d.p accuracy we would expect to need n iterations.

Where

$$
n \square 1+\left(3 \frac{1}{3}\right) 2=7 \frac{2}{3}
$$

In fact we needed 8 , if we now wish to go to $5 \mathrm{~d} . \mathrm{p}$
accuracy the total numbers of iteration we would need be about.

$$
1+\left(3 \frac{1}{3}\right) 5=17 \frac{2}{3} \text { i.e/about } 18 .
$$

Thus we have proved that the Bisection Method converges and if ε_{n+1} is the error in the approximation after $n+1$ steps then $\varepsilon_{n+1} \square \frac{1}{2} \varepsilon_{n}$ which then yields the formula*above.

For the method of false rule it can be shown that convergence will always occur and the errors in the solution at two consecutive iterations, ε_{n} and ε_{n+} are related by $\varepsilon_{n+1}, \square k . \varepsilon_{n}$. Where $|K|<\mid$
where the value of K depends upon particular function
$f(x)$. If $/ k /$ is small convergence is fast, if $|\mathrm{k}|$ is nearly $=1$ convergence is slow.

These two methods both have the propects that the error at consecutive stages are related by a formula of the type $\varepsilon_{n+1} \square A \varepsilon_{n} \quad$ where A is some constant.

In each cases we say that the process converges linearly.

There are also processes where the errors at consecutive stages $\varepsilon_{n}, \varepsilon_{n+1}$ are related by a formula of the type $\varepsilon_{n+1} \square A \varepsilon_{n}^{p}$ in which we say that the method
converges with power P.
It can be proved that the $2^{\text {nd }}$ method converges with power $\frac{\sqrt{5}+1}{2}$ the bigger the value of P, the faster the method will converge.
(b) The one point methods:

We shall discuss two such methods:

1) Newton-Raphson Method with two variations.
(i) For multiple roots.
(ii) Stephenson's Methods.
2) General Iterative Method.

1. Newton-Raphson Method:

If, in the secant Method, we let the two starting values x_{1}, x_{2} become arbitrarily close we eventually replace the secant joining the points P. $\left(x_{1}, f(x)\right) . p_{2}\left(\left(x_{2}, f\left(x_{2}\right)\right)\right.$ by the tangent at P_{γ}.

Let T be the tangent at $p_{1}\left(x_{n} f\left(x_{n}\right)\right.$ and let T cross the line $\mathrm{y}=0$ at a then a is $\left(x_{n+1}, \mathrm{O}\right)$ and \boldsymbol{X}_{n+1} is our new approximation. We can find the value of \boldsymbol{X}_{n+1} easily for:

$$
\frac{f\left(x_{n}\right)-0}{x_{n}-x_{n+1}}=f^{\prime}\left(x_{n}\right) .
$$

from which we deduce that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
this is the Newton-Raphson formula.

Example:

$$
\text { Solve } \frac{1}{1+x}=\log _{e} x
$$

By the Newton - Raphson method?

Solution:

Start at $x_{1}=1$

$$
\begin{aligned}
& f(x)=\frac{1}{1+x}-\log _{e} x \\
& f^{\prime}(x)=\frac{-1}{(1+x)^{2}}-\frac{1}{x}
\end{aligned}
$$

Newton - Raphson Method gives.

$$
x_{n+1}=x_{n}+\frac{\left(\frac{1}{1+x_{n}}-\log x_{n}\right)}{\left(\frac{1}{\left(1+x_{n}\right)^{2}}+\frac{1}{x_{n}}\right)}
$$

n	$\mathrm{x}_{\mathrm{n}}=$
1	1
2	$1.4=\quad\left(1+\left(\frac{1}{2}-0\right) /\left(\frac{1}{4}+1\right)\right)$
3	$1.4903={ }^{\left(1.4+\frac{1}{2.4}-\log 1.4\right)\left(\frac{1}{5.76}+\frac{1}{1.4}\right)}$
4	$1.49340=$ Correct to 5.d.p

Thus the Newton Raphson gets 5.d.ps in 3 iterations compared with 16 by the method if Bisection.

Example:

Find $2^{\frac{1}{3}}$ by the Newton Raphson Method?
Solution:
$2^{\frac{1}{3}}$ is the root of $x^{3}-2=0$
so, in the $\mathrm{N}-\mathrm{R}$ we put

$$
\begin{aligned}
& f(x)=x^{3}-2 \\
& f^{\prime}(x)=3 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{\left(x_{n}^{3}-2\right)}{3 x_{n}^{2}} \\
& =\frac{2}{3}\left(x_{n}+\frac{1}{x_{n}^{2}}\right)
\end{aligned}
$$

We start at $x_{1}=1$

$$
\begin{aligned}
& x_{2}=\frac{4}{3}=1.3333 \\
& x_{3}=1.26389 \quad(\text { correct to } 2 d . p) \\
& x_{4}=1.2599335(\text { correct to } 4 d . p) \\
& x_{5}=1.25992105(\text { correct to } 8 d . p)
\end{aligned}
$$

i.e

$$
\begin{aligned}
& \varepsilon_{3}=3.9 \times 10^{-3} \\
& \varepsilon_{4}=1.245 \times 10^{-5} \\
& \varepsilon_{5}=1.06 \times 10^{-10}
\end{aligned}
$$

Theorem:

If ρ is the exact solution of $f(x)=0$ and
$x_{1}=\rho+\varepsilon_{1}$ the Newton Rophson method will converage provided that ε_{1} is sufficiently small and

$$
\left|\frac{1}{2} \varepsilon_{1}^{2} \frac{f^{\prime \prime}(\rho)}{f^{\prime}(\rho)}\right|<1
$$

Proof:

Let $x_{1}=\rho+\varepsilon_{1}$ where ρ is the exact solution of $f(x)=0$ Then our next estimate of ρ

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{`}\left(x_{1}\right)} \\
& =\rho+\varepsilon_{1}-\frac{f\left(\rho+\varepsilon_{1}\right)}{f^{`}\left(\rho+x_{1}\right)}
\end{aligned}
$$

and so, since $f(\rho)=0$ if ε_{1} is sufficiently small,

$$
x_{2}=\rho+\varepsilon_{1} \frac{\varepsilon_{1} f^{\prime}(\rho)+\frac{1}{2} \varepsilon_{1}^{2} f^{1}(\rho)}{f^{\prime}(\rho)+\varepsilon_{1} f^{\prime \prime}(\rho)}
$$

which simplifies, on neglecting ε_{1}^{3} and higher term.

$$
x_{2}=\rho+\frac{1}{2} \varepsilon_{1}^{2} \frac{f^{\prime \prime}(\rho)}{f^{\prime}(\rho)}
$$

Thus

$$
\left|x_{2}=\rho\right|=\left|\frac{1}{2} \varepsilon_{1}^{2} \frac{f^{\prime \prime}(\rho)}{f^{\prime}(\rho)}\right|
$$

and so $\left|x_{2}-\rho\right|<\left|x_{1}-\rho\right|=\left|\varepsilon_{1}\right|$
provided $\left|\frac{1}{2} \varepsilon_{1}^{2} \frac{f^{\prime \prime}(\rho)}{f^{\prime}(\rho)}\right|<1$
this proves the theorem.
We will have

$$
\begin{aligned}
& x_{n}=\rho+\varepsilon_{n} \\
& i . e / x_{n}-\rho=\varepsilon_{n} .
\end{aligned}
$$

so that the error will decrease quadratically. Thus if our first estimate is accurate to 1 d.p. our $2^{\text {nd }}$ should be accurate to 2 d.p our $3^{\text {rd }}$ to 4 d.p. Our $4^{\text {th }}$ to 8 d.p and so on.

Example:

Use the Newton Raphson Method to find $\sqrt{2}$ to 4.d.p starting from $x=1$?

Solution:

In this case $f(x)=x^{2}-2$

$$
\begin{aligned}
& f(x)=x^{2}-2 \\
& f^{\prime}(x)=2 x
\end{aligned}
$$

$$
N-R \text { formula }:
$$

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{\left(x_{n}^{2}-2\right)}{2 x_{n}} \\
& =\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right)
\end{aligned}
$$

Hence we have the successive approximations.

n	x_{n}	ε_{n}
1	1	0.4142
2	1.5	0.0858 (1 d.p)
3	1.4167	0.0025 (2 d.p)
4	1.4142	0.000014 (4.d.p)

(1) The Newton Raphson method may fail, or at best

converage slowly if the function has amultiple root or two

roots very close together.

To over come this difficulty modified versions of the

Newton Raphson method have been developed, one of which we now examine.

Suppose that $f(x)$ has a zero at $x=\alpha$ of multiplicity K. then

$$
\begin{aligned}
& f(\alpha)=f^{\prime}(\alpha)=\ldots \quad \ldots=f^{k-1}(\alpha)=0 \\
& \text { but } f^{k}(\alpha) \neq 0
\end{aligned}
$$

We modify the Newton Raphson formula

$$
x_{n+1}=x_{n-} \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

by introducing a parameter λ as a factor of the second term vis.

$$
x_{n+1}=x_{n}-\frac{\lambda f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

and we carryout an analysis to find the best value for λ.
Let

$$
\begin{aligned}
& x_{n}=\alpha+\varepsilon_{n} ; \text { then } \\
& \begin{aligned}
f\left(x_{n}\right)= & f\left(\alpha+\varepsilon_{n}\right) \square f(\alpha)+\varepsilon_{n} f^{\prime}(\alpha)+\ldots \\
& +\frac{\varepsilon_{n}^{k}}{k!} f^{k}(\alpha)+\frac{\varepsilon_{n}^{k+1}}{(k+1)!} f^{k+1}(\alpha)
\end{aligned}
\end{aligned}
$$

and

$$
\begin{aligned}
f^{\prime}\left(x_{n}\right) & =f^{\prime}\left(\alpha+\varepsilon_{n}\right) \square f^{\prime}(\alpha)+\varepsilon_{n} f^{\prime \prime}(\alpha)+\ldots \\
& +\frac{\varepsilon_{n}^{k-1} f^{k}(\alpha)}{(k+1)!}+\frac{\varepsilon_{n}^{k}}{k!} f^{k+1}(\alpha)
\end{aligned}
$$

since α is a zero of multiplicity K these formulae simplify to

$$
\begin{aligned}
& f\left(x_{n}\right) \square \frac{\varepsilon_{n}^{k}}{k^{\prime}} f^{k}(\alpha)+\frac{\varepsilon_{n}^{k+1}}{(k+1)} f^{k+1}(\alpha) \\
& f^{\prime}\left(x_{n}\right) \square \frac{\varepsilon_{n}^{k-1}}{(k-1)} f^{k}(\alpha)+\frac{\varepsilon_{n}^{k}}{k!} f^{k-1}(\alpha)
\end{aligned}
$$

and so substituting in *

$$
x_{n+1}=\left(\alpha+\varepsilon_{n}\right)-\frac{\lambda\left(\varepsilon_{n}+a \varepsilon_{n}^{2}\right.}{k\left(1+b \varepsilon_{n}\right)}
$$

where $a=\frac{f^{k+1}(\alpha)}{(k+1) f^{k}(\alpha)}$ and $\quad b=\frac{f^{k+1}(\alpha)}{k f^{k}(\alpha)}$
Hence

$$
x_{n+1}-\alpha=\varepsilon_{n}\left(1-\frac{\lambda}{k}\right)-\frac{\lambda}{k}(a-b) \varepsilon_{n}^{2}
$$

by choosing $\lambda=k$ we retain
quadratic convergence in this modified Newton Raphson
and that

$$
\varepsilon_{n+1}=x_{n+1}-\alpha \square \frac{f^{k+1}(\alpha)}{k(k+1) f^{k}(\alpha)} e_{n}^{2}
$$

we have therefore proved:

Theorem:

if $f(x)$ has a zero of multiplicity K at $x=\alpha$ the modified
Newton Raphson formula

$$
x_{n+1}=x_{n}-\frac{K^{f\left(x_{n}\right)}}{f^{\prime}\left(x_{n}\right)}
$$

has quadratic convergence.

Example:

Use the modified Newton Raphson method + find the double positive root of $x^{4}-4 x^{2}+4=0$ starting at $x_{1}=1$

Solution:

In this case $K=2$
so the formula is
or

$$
\begin{aligned}
& x_{n+1}=x_{n} \frac{-2\left(x_{n}^{4}-4 x_{n}^{2}+4\right)}{4 x_{n}^{3}-8 x_{n}} \\
& x_{n+1}=\frac{x_{n}^{4}-4}{2 x_{n}^{3}-4 x_{n}}
\end{aligned}
$$

n	x_{n}	
1	1	
2	1.5	
3	1.4167	
4	$1.4142 \quad$ Which is correct to 4	

(ii) Stephenson's Method:

The N-R has the disadvantage that we have to
workout $f^{\prime}(x)$ Stephenson's produced a variant which avoids this but still converges quadratcally steffenson's
iterative formula is

$$
x_{n+1}=x_{n}-\frac{f^{2}\left(x_{n}\right)}{f\left[x_{n}+f\left(x_{n}\right)\right]-f\left(x_{n}\right)}
$$

which is easy to program and avoids having to write a
procedure for $f^{`}(x)$.

2. The General Iterative Method (Fixed Point Method):

The Newton-Raphson method is a particular example of a class of what are known as "iterative methods". An iterative method is one in which an expression of the form.

$$
x_{n+1}=F\left(x_{n}\right) \quad \ldots \quad \ldots \quad *
$$

is used to produce the $(n+1)$ st approximate $\left(x_{n+1}\right)$ to the solution of the equation.

$$
\begin{equation*}
x=F(x) \tag{1}
\end{equation*}
$$

$$
\ldots
$$

From the nth approximation $\left(\mathrm{X}_{\mathrm{n}}\right)$.

Theorem:

If α is the exact solution of (1) so that $\alpha=F(\alpha)$
then * will converge to α from a sufficiently close starting value x_{o} if and only if $\left|F^{`}(\alpha)\right|<1$.

Proof: We are using * so that

$$
x_{n+1}=F\left(x_{n}\right)
$$

Suppose that $x_{n+1}=F\left(x_{n}\right)$ then

$$
\begin{aligned}
x_{n+1}= & F\left(\alpha+\varepsilon_{n}\right)=F(\alpha)+\varepsilon_{n} F^{`}(\alpha)+0\left(\varepsilon_{n}^{2}\right) \\
& =\alpha+\varepsilon_{n} F^{`}(\alpha)
\end{aligned}
$$

(Assuming that ε_{n}^{2} may be ignored)
Thus the magnitude of the error at the $(n+1)$ st iteration is

$$
\left|\varepsilon_{n} F^{`}(\alpha)\right|<\left|\varepsilon_{n}\right| \text { iff }\left|F^{`}(\alpha)\right|<1
$$

the errors $\left|\varepsilon_{o}\right|,\left|\varepsilon_{1}\right|, \ldots$, will therefore form a decreasing sequence iff $\left|F^{`}(\alpha)\right|<1$ i.e. convergence will occur iff $\left|F^{`}(\alpha)\right|<1$ Definition:

If an iterative procedure for solving an equation converges to the solution in such a way that the errors $\varepsilon_{n}, \varepsilon_{n+1}$ at the n-th and $(n+1)$ st iterations have a relationship of the
form $\varepsilon_{n+1}=A \varepsilon_{n}^{p}$ then we say that the iterative procedure "converges with power P ".

Corollary:

Since $\left|\varepsilon_{n+1}\right|=\left|\varepsilon_{n}\right|\left|\varepsilon_{n} F^{`}(\varepsilon)\right|$ the convergence is linear (i.e./ $\rho=1$) unless $F^{`}(\alpha)=0$. The smaller the value of $\left|F^{`}(\alpha)\right|$ the more rapid the convergence. Thus for fast convergence we should try to arrange* so that $\left|F^{`}(\alpha)\right|$ is small.

Example:

Find the positive root of $x^{2}-x-1=0$ using iterative methods?
(Starting with $x=1$)

Solution:

$$
x_{n+1}=F\left(x_{n}\right)
$$

(i) by writing the equation as

$$
\begin{gathered}
x=x^{2}-1 \\
i . e / F(x)=x=x^{2}-1 \\
F^{\prime}(x)=2 x \\
F^{\prime}(1)=2>1 \\
F^{\prime}(2)=4>1
\end{gathered}
$$

Convergence will not occur since $\left|F^{`}(\alpha)\right|>1$.
(ii) by writing the equation as:

$$
\begin{aligned}
& |F(x)|=x=1+\frac{1}{x} \\
& F^{`}(x)=\frac{-1}{x^{2}} \\
& F^{`}(1)=-1<1 \\
& F^{`}(2)=\frac{-1}{4}<1
\end{aligned}
$$

convergence will occur since $\left|F^{`}(\alpha)\right|<1$.
Taking $x_{o}=1$

| n | x_{n} | $\left[x_{n+1}=\boldsymbol{F}\left(x_{n}\right)\right]$ |
| :---: | :---: | :---: | :---: |
| 0 | 1 | |
| 1 | 2 | |
| 2 | $3 / 2$ | $=1.5$ |
| 3 | $5 / 3$ | $=1.667$ |
| 4 | $8 / 5$ | $=1.600$ |
| 5 | $13 / 8$ | $=1.625$ |
| 6 | $21 / 13$ | $=1.615$ |

Example:

Consider the equation $x^{2}-e^{x} \cos (x)-2.45=0$
Use three iteration of fixed point method with $x_{o}=0.75$
To find the first positive nonzero root?
(ii) $\quad F(x)=x=\ln \left[\frac{2.45-x^{2}}{\cos x}\right]$

$$
\begin{aligned}
& F^{`}(x)=\frac{\cos x}{2.45-x^{2}}\left[\frac{-2 x \cos x+\left(2.45-x^{2}\right)}{\cos ^{2} x}\right] \\
& =\frac{-2 x \cos x+\left(2.45-x^{2}\right) \sin x}{\left(2.45-x^{2}\right) \cos x} \\
& =\frac{-2 \dot{x}}{\left(2.45-x^{2}\right)}+\tan x
\end{aligned}
$$

$F^{`}(1.5)=0.8985<1$
$F^{`}(0)=0<1$
it converges.
(it has root in the interval (0, 1.5).

Solution:

(i) $\quad F(x)=x=e^{x} \cos x-2.45$

$$
\begin{gathered}
F(x)=\frac{\left[e^{x} \cos x-e^{x} \sin x\right]-e^{x} \cos x}{x^{2}} \\
+\frac{2.45}{x^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& F^{\prime}(1.50)>1 \\
& F^{\prime}(0)>1
\end{aligned}
$$

convergence will not occur.

n	x_{n}	$x_{n+1}=F\left(x_{n}\right)$
0	0.75	
1	0.9477	
2	0.9781	
3	0.9833	

